Ⅰ 生化全套检查包括哪些项目
通常所说的血生化检查一般包括的检测项目有肝功能的指标,例如谷丙转氨酶、谷草转氨酶、谷氨酰转肽酶、总蛋白、白蛋白,还有直接胆红素和间接胆红素等指标。血生化还包括有肾功能的指标,也就是血肌酐、尿素氮等
Ⅱ 生化检查包含哪些项目
体检主要包括三大部分:一是一般的体格检查,包括内科、外科、妇科、五官科、肝病科的专科检查;二是功能检查,包括心电图、X光、B超(包括肝、胆、脾、肾和生殖系统)等影像学检查;三是生化检验,包括血、尿、便三大常规及血糖、血脂、肝肾功能、乙肝五项的化验检查。此外,还有肿瘤三项(甲胎蛋白、EB病毒、癌胚抗原)检查,及前列腺癌、宫颈癌、乳腺癌的早期筛查等。 一般情况下,体检都要按照以上几大部分进行,但不同年龄、性别、体重、职业的人所需的体检侧重点也有所不同。李茹建议,老年人最好要重视以下七个方面的检查: 第一,心脑血管检查。这是老年人体检的重点。测血压,高血压是冠心病发病诱因之一,血压经常处于高峰,容易发生脑血管意外;心电图检查,可了解心肌供血情况、心律失常等,年纪很大,没办法跑活动平板者,建议做个心脏彩色B超;颈动脉B超,可检查出血管是否发生病变。 第二,肝、胆、胰腺B超及胸透。肝、胆B超可对肝、胆的形态进行检查,提前发现是否出现肝、胆肿瘤,或胆囊结石。由于这是一种无创伤检查,所以老年人可进行多次检查。胸透可早期发现肺结核、肺癌,常年嗜烟的老年人更应该定期做胸透检查,对无症状的早期肺部肿瘤,这是最佳初筛手段。 第三,查眼底。可及早发现老年性白内障、原发性青光眼。患有高血压、冠心病、糖尿病的病人,可通过查眼底反映出动脉是否硬化。 第四,查血糖和血脂。肥胖或患有高血压、动脉硬化的老人尤应注意此项,特别是餐后两小时的血糖很能说明问题。 第五,检测骨密度。老年人容易骨质疏松,因此50岁以上的男性和45岁以上的女性应进行骨密度检测。 第六,胃肠镜检查。50岁以上的老人,尤其是老年男性应把其列入体检“补充清单”。胃肠镜检查可发现一些癌前病变,如大肠息肉等,以便尽早清除。另外,通过大便潜血试验还可早期发现消化道疾患及癌症。 第七,妇科检查或前列腺检查。老年女性即使已绝经,也不能忽视每年一次的全面妇科检查,而男性则应做前列腺检查。 总之,当老年人为自己定体检清单时,最好先将身体的不适情况告诉医生,以便医生有针对性地补充检查项目,体检结果出来后一定要请医生加以分析,发现问题后应尽早治疗。
Ⅲ 健康检查中常用的生理生化指标有哪些
体检项目的详细介绍及指标分析:
. 内科检查: 血压、脉搏、心肺听诊、胸腹部视触叩听等。
2. 外科检查: 淋巴皮肤、四肢脊柱、甲状腺、肛门、肛指检查、乳房、外生殖器等。
3. 胸部X光片:胸部X光片可显示心、肺、大血管和横隔位置。通常有持续咳嗽、咳血、胸痛或怀疑胸部受创、肺结核、肺部占位或其他肺疾病时,可使用胸部X光摄片。
4. 心电图:静式心电图检查,可检验心脏功能,包括心脏电脉冲活动,心率、心律及心房和心室活动分析等。
5. 运动心电图:记录心脏在身体运动状态下的能耐和氧气需求量。从而可找出胸痛或运动时心跳节律不齐的原因,并可确定心脏病或心脏手术后所能承受的运动量。
6. B超检查:肝、胆、胰、脾、肾、胃、甲状腺、乳腺。盆腔:男性(包括膀胱、输尿管、前列腺),女性(包括子宫、附件、膀胱)。
7. 眼科检查:睑结膜、球结膜、巩膜、角膜、色觉、视网膜(眼底)等
8. 耳鼻喉科检查:耳廓、外耳道、鼓膜、乳突、鼻前庭、鼻(鼻中隔、上、中、下鼻道、上、中、下鼻甲)、副鼻窦、咽峡、扁桃体、咽后壁、会厌、喉部迟和等
9. 口腔科检查:口腔黏膜、舌部、腭部、牙、牙周、腺体、颌部
10. 柏氏子宫颈涂片检查:女性在20岁后,每年应进行子宫颈涂片检查,以确定子宫细胞是否正常,或有无癌细胞迹象,准确度达百分之九十五。
11. 乳房检查:35岁以上的女性,除了每月自我检查,每年应接受一次专业的确诊检查,以及早发现异常陆逗硬块。
12. 化验项目
1)一般检早旦卖查: 血常规、 血型、 尿常规、 粪隐血、 血沉
2)生化检查: 血糖 肌酐 尿素 尿酸 二氧化碳结合力 总蛋白 白蛋白 球蛋白 结合胆红素 总胆红素 谷丙转氨酶(GPT) 谷草转氨酶(GOT) 碱性磷酸酶(AKP) 乳酸脱氢酶(LDH) γ-谷氨酰转肽酶 肌酸磷酸激酶 淀粉酶 果糖胺
3)血脂分析: 总胆固醇 甘油三脂 高密度脂蛋白 低密度脂蛋白 载脂蛋白AI 载脂蛋白B
4)电解质: 血钾、钠、氯、钙、磷 血镁 血清铁 总铁结合力
5)蛋白电泳
6)免疫: RF IgG IgA IgM C3 C4 抗”O” C反应蛋白
7)血粘滞度
8)甲肝 抗HAV-IgM
9)乙肝两对半 HBsAg、HBsAb、HBcAb、HbeAg、HbeAb
10)丙肝 抗-HCV
11)爱滋病 抗-HIV
12)梅毒 RPR
13)放射免疫: AFP(甲胎蛋白)、CEA(癌胚抗原)、CA19—9、PSA(前列腺特异性抗原)、胰岛素、甲状腺全套:T3、T4、FT3、FT4、TSH、rT3
雌激素全套:泌乳素、雌二醇、睾酮、孕酮、促黄体生成素、促卵泡成熟素
Ⅳ 请问常规体检中的生化部分主要是检查什么的他又包括哪些
血液是一种具有粘滞性的循环于心血管系统中的流动组织。它与淋巴液、组织间液一起组成细胞外液,是体液的重要部分。成年人血液总量约占体重的8%左右,婴幼儿比成人血容量大。若一次失血少于总量的10%,对身体影响不大,若大干总量的20%以上,则可严重影响身体健康,当失血超过总量的30%时将危及生命。
血液在沟通内外环境及机体各部分之间、维持机体内环境的恒定及多种物质的运输、免疫、凝血和抗凝血等方面都具有重要作用。同时由于血液取材方便,通过血中某些代谢物浓度的变化,可反映体内的代谢或功能状况,因此与临床医学有着密切的关系,
第一节血液的组成及其化学成分和功能
一、血液的组成
血液(全血)(blood)是由液态的血浆与混悬在其中的红细胞、白细胞、血小板等有形成分组成. 正常人血液的pH为7. 35-7. 45,比重为1.050-1.060,比重的大小取决于所含有形成分和血浆蛋白质的量,血液的粘度为水的4—5倍,37℃时的渗透压为6.8个大气压。离体血液加适当的抗凝剂后离心使有形成分沉降,所得的浅黄色上清液为血浆(plasma),约占全血体积的55%-60%.如离体血液不加抗凝剂任其凝固成血凝块后所析出的淡黄色透明的液体即为血清(serum)。在临床医疗工作中,经常要采取全血、血浆、血清三种血液标本,它们的主要区别及制备方法是:
全血=血浆+有形成分(制备时需加抗凝剂)
血浆=全血—有形成分(制备时需加抗凝剂,全血样品离心后吸取上层清液)
血清=全血—有形成分—纤维蛋白原
=血浆—纤维蛋白原(制备时无需加抗凝剂)
血浆与血清的主要区别在于参与血液凝固的成分在量和质上的区别。
二、血液的化学成分
正常人血液化学成分可简要概括为下列三类:
水: 正常人全血含水约81%一86%,血浆中含水达93%--95%。
(二)气体:氧、二氧化碳、氮等。
(三)可溶性固体:分为有机物与无机盐两大类。其中有机物包括:蛋白质(血红蛋白、血浆蛋白质及酶与蛋白类激素)、非蛋白含氮化合物、糖及其他有机物和维生素、脂类(包括类固醇激素)。无机物主要为各种离子如Na+,K+,CL- -等。
三、血液非蛋白含氮化合物
血液中除蛋白质以外的含氮物质,主要是尿素(urea)、尿酸(uric acid)、肌酸(creatine)、肌酐(creatinine)、氨基酸、氨、肽、胆红素(bilirubin)等,这些物质总称为非蛋白含氮化合物而这些化合物中所含的氮量则称为非蛋白氮(non-protein-nitrogen,NPN),正常成人血中NPN含量为143--250mmol/L这些化合物中绝大多数为蛋白质和核酸分解代谢的终产物,可经血液运输到肾随尿排出体外。当肾功能障碍影响排泄时会导致其在血中浓度升高,这也是血中NPN升高最常见的原因。此外,当肾血流量下降,体内蛋白质摄入过多,消化道出血或蛋白质分解加强等也会使血中NPN升高,临床上将血中NPN升高称之为氮质血症。
尿素是非蛋白含氮化合物中含量最多的一种物质,正常人尿素氮(blood-urea-nitrogen,BUN),含量占血中NPN总量的l/2-1/3,故临床上测定血中BUN与测定NPN的意义基本相同
尿酸是体内嘌呤化合物分解代谢的终产物,当机体肾排泄功能障碍或嘌呤化合物分解代谢过多如痛风、白血病、中毒性肝炎等疾病均可使血中尿酸升高。
肌酸是肝细胞利用精氨酸、甘氨酸和S-腺苷甲硫氨酸(SAM)为原料而合成的(图18-1),主要存在于肌肉和脑组织中,正常人血中含量为228.8—533.8μmol/L,肌酸和ATP反应生成磷酸肌酸是体内ATP的储存形式。肌酐是由肌酸脱水或由磷酸肌酸脱磷酸脱水而生成且反应不可逆。因此它是肌酸代谢的终产物,正常人血中肌酐的含量为88 4~176.8μmol/L,肌酐全部由肾排泄,且食物蛋白质的摄入量不影响血中肌酐的含量,故临床检测血肌酐含量较尿素更能正确地了解肾功能。
正常血氨浓度为5.9—35.2umol/L,氨在肝中合成尿素,当肝功能障碍时,血氨升高,血中尿素含量则下降。
第二节血浆蛋白质
血浆蛋白质的含量及分类
血浆中除水分外含量最多的一类化合物就是血浆蛋白质,正常人含量为60~80g/L,是多种蛋白质的总称。按不同的分离方法可将血浆蛋白质分为不同组分,如用盐析法可将其分为白蛋白(a1bumin)、球蛋白(globulin)和纤维蛋白原(fibrinogen)。正常人白蛋白(A)含量为35—55g/L,球蛋白(G)为10一30g/L,白蛋白与球蛋自的比值(A/Gratio)为1.5—2.5。用电泳法则可将血浆蛋白质分为不同的组分,如用简便快速的醋酸纤维薄膜可分为白蛋白、α1球蛋白、α2球蛋白、β球蛋白和γ球蛋白,用分辨率更高的聚丙烯酰胺疑胶电泳或免疫电泳则可分成更多组分,目前已分离出百余种血浆蛋白质。
按不同的来源则将血浆蛋白质分为两大类。一类为血浆功能性蛋白质.是由各种组织细胞合成后分泌入血浆,并在血浆中发挥其生理功能。如抗体、补体、凝血酶原、生长调节因子、转运蛋白等。这类蛋白质的量和质的变化反映了机体代谢方面的变化;另一类则是在细胞更新或遭到破坏时溢入血浆的蛋白质。如血红蛋白、淀粉酶、转氨酶等.这些蛋白质在血浆中的出现或含量的升高往往反映了有关组织的更新、破坏或细胞通透性改变。
血浆功能性蛋白质多具有以下几个共同特点:
1.除γ球蛋白是由浆细胞合成,少数是由内皮细胞合成,大多数血浆蛋白质是由肝细胞合成的。
2.一般是由粗面内质网结合的核糖体合成的,先以蛋白质前体出现,经翻译后的修饰加工如信号肽的切除、糖基化、磷酸化等而转变为成熟蛋白。血浆蛋白质自肝脏合成后分泌入血浆的时间为30分钟到数小时不等。
3.几乎都是糖蛋白,含有N或O连接的寡糖链,根据其含糖量的多少可分为糖蛋白(glycoprotein)和蛋白多糖(proteoglycan)。糖蛋白中糖的含量<40%。蛋白多糖中含糖量可达90%一95%,现认为糖蛋白中的糖链具有许多重要的作用,如血浆蛋白质合成后的定向转移;细胞的识别功能,此外糖链还可使一些血浆蛋白质的半寿期延长。
4.多种血浆蛋白质如运铁蛋白、铜兰蛋白、结合珠蛋白等都具有多态性,这对遗传研究及临床工作有一定意义。
在一些组织损伤及急性炎症时,某些血浆蛋白质的含量会升高,这些蛋白质称为急性时相蛋白质(acute phase protein,APP),包括C-反应蛋白、a1抗胰蛋白酶、结合珠蛋白、a1酸性蛋白和纤维蛋白原等。白细胞介素-1是单核吞噬细胞释放的一种多肽,它能刺激肝细胞合成许多急性时相蛋白。这些急性时相蛋白在人体炎症反应时发挥一定的作用,如a1抗胰蛋白酶能使急性炎症反应时释放的某些蛋白酶失活。但是有些蛋白质如白蛋白与转铁蛋白则在急性炎症反应时含量下降。
二、血浆蛋白质的主要生理功能
(一)调节血浆胶体渗进压和pH
血浆胶体渗透压是由血浆蛋白质产生,其大小取决于蛋白质的浓度和分子大小。白蛋白是血浆中含量最多的蛋白质,正常人含量为35-55g/L,分子量约为68,500(多数血浆蛋白质的分子量为16万-18
万之间),含585个氨基酸,等电点为4.7。血浆胶体渗透压中75%是由白蛋白产生,故白蛋白的主要功能是维持血浆胶体渗透压。清蛋白是由肝合成,成人每日每千克体重合成约120--200mg。占肝脏合成分泌蛋白质总量的50%。临床上血浆白蛋白含量降低的主要原因是:合成原料不足(如营养不良等);合成能力降低(如严重肝病);丢失过多(肾脏疾病,大面积烧伤等);分解过多(如甲状腺功能亢进、发热等)。白蛋白含量下降,导致血浆胶体渗透压下降,使水分向组织间隙渗出从而产生水肿。
正常人血液pH在7.35--7.45,血浆大多数蛋白质的pI在pH 4--6之间,血浆蛋白质可以弱酸或部分以弱酸盐的形式存在,组成缓冲对参与维持血液pH的相对恒定。
(二)运输功能
血浆中那些难溶于水或易从尿中丢失,易被酶破坏及易被细胞摄取的小分子物质,往往与血浆中一些蛋白质结合在一起运输,这些蛋白质通过专一性结合不同的物质而有不同的作用。①结合运输血浆中某些物质到作用部位,防止经肾随尿排泄而丢失。②运输难溶于水的化合物。如类固醇、脂类、胆红素等与白蛋白、载脂蛋白(见脂类代谢)、类固醇结合球蛋白(CBG)甲状腺素结合球蛋白(TBG)等结合运输。结合运输某些药物具有解毒和促进排泄的功能。④对组织细胞摄取被运输物质起调节作用。
(三)免疫功能
机体对入侵的病原微生物可产生特异的抗体,血液中具有抗体作用的蛋白质称之为免疫球蛋白(immunoglobulin,Ig),由浆细胞产生,电泳时主要出现于γ球蛋白区域,Ig能识别并结合特异性抗原形成抗原抗体复合物,激活补体系统从而消除抗原对机体的损伤。Ig 分为五大类即IgG、IgA、IgM、IgD及IgE,它们在分子结构上有一共同特点即都有一四链单位构成单体,每个四链单位由两条相同的长链又称为重链(heavy chain,H链)和两条相同的短链又称为轻链{1ight chain,L链}组成。其中IgG、lgD、IgE均为一个四链单位组成(单体),IgA是二聚体,IgM则是五聚体,H链由450个氨基酸残基组成,L链由210—230个氨基酸残基组成,链与链之间以二硫键相连。
补体(complement)是血浆中存在的参与免疫反应的蛋白酶体系,共有11种成分,抗原抗体复合物可激活补体系统,成为具有酶活性的补体或数个补体构成的活性复合物从而杀伤靶细胞、病原体或感染细胞。
(四)凝血与抗凝血功能·
多数凝血因子和抗凝血因子属于血浆蛋白质,且常以酶原形式存在,在一定条件下被激活后发挥生理功能(见本章第三节)。
(五) 营养作用
三、血浆酶类
血浆蛋白质中还包括一些具有酶活性的蛋白质,按其来源与作用不同可分为两类。
(一)血浆功能性酶
(二 ) 血浆非功能性酶
这类酶在细胞内合成并存在于细胞中,正常人血浆中含量极低,基本无生理作用。按其作用部位分为下列两类:
1.细胞酶存在于细胞中并在其中发挥作用,当细胞在生理病理情况下其细胞膜的通透性改变或细胞损伤时逸入血浆,它们在血浆中虽无生理作用但却有临床诊断价值,尤其是一些组织特有的酶在血浆中含量的变化有助于判断该组织的病变。
2.外分泌酶外分泌腺分泌的酶。如淀粉酶、脂肪酶、碱性磷酸酶等,正常时仅少量逸入血浆,但当腺体病变时,进入血浆的量增多。如急性胰腺炎时血浆中淀粉酶含量明显增多。
第三节血液凝固
血液凝固(blood coagulation)是血液由液态转变为凝胶态的过程,它是哺乳类动物止血功能的重要组成部分。Macfarlane等于1964年提出了凝血过程的级联式反应学说(cascade reaction hypothesis),认为凝血是一系列凝血因子被其前因子激活最终生成疑血酶,疑血酶则使纤维蛋白原转变为纤维蛋白凝块的一系列酶促反应过程。近年来随着分子生物学技术的应用使多种凝血因子和凝血过程的多个环节在分子水平得到了阐述,但至今机体内正常的凝血过程还未完全清楚。
一、凝血因子
参与血液凝固的因子称为疑血因子,已知有14个,即国际疑血因子委员会于60年代初根据发现的先后顺序分别以罗马数字命名的凝血因子12个(其中因子VI为因子V的活性形式不再视为一独立的疑血因子)和2个激肽系统即高分子量激肽原(high molecular weight kininogen,HMWK)和前激肽释放酶<prekallikren,PK)。近年来有学者主张因子I到因子Ⅳ采用同义名称即分别为纤维蛋白原({ibrinogen}、疑血酶原(prothrombin)、组织因子(tissue factor)和钙离子,因子V至因子Ⅷ用罗马数字表示。凝血因子中除因子Ⅳ为无机钙离子外,其余为蛋白质;除因子Ⅲ是组织细胞合成并存在于全身各组织中的脂蛋白外,其余主要是肝合成并存在于血浆中的糖蛋白,故当肝功能障碍时可造成凝血因子合成减少从而影响凝血过程。此外除因子I为纤维蛋白原,因子Ⅲ、Ⅳ、V、Ⅷ、HMWK为辅因子外,其余均以酶原形式存在,凝血时需相继激活后才能发挥作用(在其编号的右下角加a。为活性形式),凝血因子的部分特性见表18-1
凝血因子的结构与功能等特点可将其分为以下四类:
(一)依赖维生素K的凝血因子
包括因子II、VII、IX、X。它们的共同特点是在其氨基末端含有数量不等的γ羧基谷氨酸残基(γ-carboxyglutamate,Gla),上述因子的谷氨酸残基在γ碳原子上的羧化作用是翻译后由γ-谷氨酰羧化酶催化的,该酶的辅酶为维生素K,作用机制见图18-2)氢醌式维生素K接受γ—碳原子的一个质子,使其带负电荷而和二氧化碳结合,2,3-环氧维生素K则被硫辛酸还原而重复利用。
双香豆素类抗凝药物华法林钠(warfarrin sodium)能抑制该步反应,因此这两种药物有抗凝作用。由于Gla的γ-碳原子上有2个羧基,故有螯合Ca2+的能力,井通过Ca2+将这些因子与血小板或因子III的磷脂表面结合加速反应的进行。若缺乏维生求K,上述凝血因子的正常合成受影响,在血浆中出现无凝血活性的异常凝血因子导致凝血障碍,引起皮下、肌肉、胃肠道出血等症状,故因子Ⅱ、Ⅶ、Ⅸ、X又称为维生家K依赖的疑血因子。因缺乏维生索K 所致的出血症状可经补充维生素K而得到治疗,所以维生素K又称为凝血维生素。
(二)具有丝氨酸蛋白水解酶作用的凝血因子
包括因子II、Ⅶ、Ⅸ、X、Ⅺ、XII及PK。分析这些凝血因子的氨基酸组成,发现其活性中心附近肽段的氨基酸序列与一些蛋白水解酶的相应区域非常相似(图18-3)。
从图中可知,这些凝血因子与胰蛋白酶等蛋白水解酶一样,都以Ser为酶的活性中心基团,在其周围均有Gly-Asp-Ser-Gly-Gly-Pro的相同序列,所以一旦这些凝血因子被激活后,都具有水解蛋白质的作用。即Ⅻ因子被激活后形成的Ⅻa就可以Ⅺ为底物,使其活化为Ⅺa,Ⅺa使Ⅸ激活成Ⅸa等等,依次作用,形成连锁反应,根据微量的活性酶可以激活大量底物的机制,所以凝血过程是一个级联式的反应过程,有明显的放大效应。
近年来的研究表明,血液疑固中的这些丝氨酸蛋白水解酶虽具有与胰蛋白酶等蛋白酶
一样的作用,而且所水解的位置也多为肽链Arg残基的羧基端所形成的肽键,但它们与消化酶相比,不少方面仍有差异,它们所催化的反应多需要Ca2+、磷脂和某些蛋白质辅因子参加。
(三)辅因子
包括因子Ⅲ、V、Ⅷ、HMWK和Ca2+。因子Ⅲ(tissue fact,TF)是唯一由多种组织细胞合成,且不存在于正常人血浆中,而广泛分布于各种不同组织细咆中的凝血因子。当组织损伤、感染及肿瘤如早幼粒白血病等可使TF释放入血从而作为因子Ⅶ的辅因子共同启动外源性凝血过程。因子V、Ⅷ分别是因子X与因子Ⅸ的辅因子,可促使反应加速进行。因子Ⅷ是存在于血浆中的一种球蛋白,曾被称为抗血友病因子(antihemophilic factor,AHF)。因编码因子Ⅷ或因子Ⅸ的基因突变或缺失导致血浆中因子Ⅷ或因子Ⅸ缺乏称之为血友病,因子Ⅷ缺乏称之为血友病A(haemophilia A);因子Ⅸ缺乏则称之为血友病B(haemophilia B),均是X连锁遗传性疾病,大多出现皮肤粘膜出血,重症患者有关节、肌肉等深部出血症状。临床治疗以注射含因子Ⅷ或因子Ⅸ的冷冻浓缩血浆为主,但易产生病毒感染等副作用。
HMWK的作用则是作为XIIa和PK的辅因子参与内源性凝血途径的接触活化。Ca2+在凝血过程中的作用是通过草酸盐和柠檬酸盐的抑制疑血过程而认识到的。现已明确Ca2+参与多步凝血反应过程,主要作用是介导凝血因子与磷脂表面形成复合物,从而加速凝血因子的激活。
(四)纤维蛋白原
是凝血过程的中心蛋白,凝血的最后阶段是生成凝血酶而使纤维蛋白原水解,快速地多聚体化并在具有转谷氨酰胺酶活性的XⅢa催化下形成稳定的纤维蛋白多聚体,完成凝血过程。
二、血液凝固过程
凝血系统的基本生理功能是在血管损伤引起出血时,通过血液凝固的级联式酶促反应使可溶性的纤维蛋白转变为纤维蛋白单体,再聚合成可溶性的纤维蛋白多聚体而进一步转变为稳定的纤维蛋白多聚体,在血管壁受损局部,继血小板粘附、聚集、释放、收缩和形成血小板血栓后,由稳定的纤维蛋白多聚体包绕血小板及其他血细胞形成坚固的血凝块。以往认为血凝过程分为 内源性凝血途径(intrinsic coagulation pathway)外源性凝血途径(extrinsic coagulation pathway)及内外源性凝血途径都需经过的凝血的共同途径(common pathway)(图18-4)。并曾认为由XII、前激肽释放酶(PK)、 激肽释放酶(KK)和高分子量激肽原(HMWK)构成启动内源性凝血途径的表面接触活化系统,经表面接触使XII活化是血管内皮损伤时激活内源性凝血系统的主要途径.
由于心血管内膜受损等因素使因子XII接触活化而启动,且血液凝固过程中参与的凝血因子全部存在于血浆中故称为内源性凝血途径。其过程为:活化的XII因子在HMWK的辅助下,可激活XI因子和PK,活化的XI因子随后在Ca2+ 的参与下,催化因子IX裂解两个肽键,并释放出35个氨基酸残基的肽段,该肽段被认为是因子IX激活的分子标志物。活化的IX继而与Ca2+ 和VIII形成IX- Ca2+-VIII复合物,在此复合物中因子IX可催化因子X转变为为具有较强酶活性的Xa,但单独的IXa的催化效率较低,需与因子 VIII结合形成1:1的复合物,这一反应需Ca2+参与,因子 VIII是辅因子,能使IXa对因子X的激活反应速度提高约数千倍,且在磷脂的存在下,可使底物的Km降低5000倍,由此推测,1分子IXa对因子X的激活若由因子IXa单独作用需6个月才能完成。但临床上却观察到先天性缺乏因子XII、PK及HMWK的患者都无出血症状,提示在体内由XII激活而启动生理性凝血过程的作用是及其微小,相反XII和激肽系统主要有促进纤溶和抗凝作用。
尽管体内凝血过程分为内、外源性两条途径,但它们并非完全独立而是相互关联。如内源性凝血途径中,XⅡa生成后除可激活因子Ⅺ外,对因子Ⅷ也有一定的激活作用;而外源性凝血过程中生成的Ⅷa·Ca”—Ⅲ复合物除能激活因子X外也可激活因子Ⅸ,此外通过内外源性凝血途径激活的因子X、Ⅱ则可通过正反馈加速凝血过程。事实上机体的凝血过程是个非常复杂的生理过程,需要有内外源性两条凝血途径同时进行,分别起着不同的作用。目前认为组织因子(TF)是激活凝血过程最重要的生理性启动因子,由于其与细胞膜的紧密结合还可起着“锚”的作用,使凝血过程局限于受损组织部位。
外源性凝血途径
因组织损伤释放组织因子而启动,且参与的凝血因子除来自血浆外,还来自组织,因此又可称组织因子途径。
组织因子的释放
组织因子(tissue factor,TF),即因子III,是存在于多种细胞质膜中的一种跨膜脂蛋白,生理条件下不会在血浆中出现。但在组织损伤、血管内皮细胞或单核细胞受细菌、内毒素、免疫复合物等刺激下,即被释放。
2.Ⅶa-Ca2+- III复合物的生成
因子Ⅶ是一种单链糖蛋白,含有Gla残基,可与Ca2+结合,当它与释放入血的因子III结合后,分子构象改变.活性中心形成而转变为Ⅶa,并形成Ⅶa-Ca2+-III复合物。在此复合物中Ⅶa作为丝氨酸蛋白酶发挥对因子X的水解作用,使其转变为具有酶活性的Xa,而因子III则是辅因子,能使Ⅶa的催化效率提高数干倍,且活化的X 又可激活Ⅶ的活化起正反馈调节作用。此外Ⅶa-Ca2+-III复合物还可激活IX从而在血小板膜磷脂(PL)上,Ⅸa可形成Ⅸa-Ca2+-Ⅷa-PL复合物,使X活化为Xa。 故Ⅶa-Ca2+-III复台物以两种方式引发体内凝血,一种方式为水解因子Ⅸ将其激活为Ⅸa,然后Ⅸa在其辅助因子Ⅷa的协助下,将因子Ⅹ水解为有活性的Ⅹ;第二
种方式为直接激活Ⅹ因子为Ⅹa,但TF本身没有蛋白水解酶活性。
正常生理情况下,虽然循环系统中有Ⅶ因子存在,但所占比例很少,大多数以酶原的形式存在,另外,组织因子胞外区也不总是暴露于循环系统中.因此不会有病理性的凝血现象。但当血管受到损伤,使TF暴露出来,Ⅶ便很快和TF结合,并迅速被水解成有酶解活性的Ⅶa因子,凝血途径被启动,防止了大量出血。
(—)凝血的共同途径
在内源性和外源性疑血途径中,因子X可分别被Ⅸa-Ca2+-Ⅷa复合物和Ⅶa-Ca2+- III复合物激活为Xa,(图18-4)而在体外因子X还可以被蝰蛇毒液激活。 而Xa生成后的凝血过程是两条凝血途径所共有的,主要包括凝血酶的生成和纤维蛋白形成两个阶段。
凝血酶的生成
在Ca2+存在的条件下,Xa在磷脂膜表面与因子V结合成Xa- Ca2+-Va-复合物(凝血酶原激活物),在此复合物中Xa发挥蛋白水解酶的作用,催化凝血酶原转变为凝血酶,因子V是辅因子可使反应加速数万倍。凝血酶是凝血系统激活过程中的关键酶,它的作用则是催化纤维蛋白原转变为纤维蛋白单体,除此之外还可激活因子Ⅸ、XII、V、VIII,及促进因子XIII 的活化等从而加速凝血过程的进行。在体内除血小板外,血管内皮细胞、中性粒细胞及淋巴 细胞等均能为凝血酶原激活物的形成提供磷脂表面。
纤维蛋白的形成与交联
这—过程包括纤维蛋白单体的形成、聚合及纤维蛋白的交联。
纤维蛋白单体的形成;纤维蛋白原是由肝合成,具有两条α链(Aa):、两条β链(Bβ)、和两条γ链(γ2)即三对不同的多肽链组成的糖蛋白,可用(Aa 、Bβ、γ)2 表示(图18-5)
纤维蛋白单体的聚合及交联;可溶性纤维蛋白单体间通过氢键等次级键相连而成的多聚体疑块,虽可网罗血细胞而形成血凝块,但较松软且不稳定,需在Ca2+参与下.由XIIIa作用才能进一步转变为稳定的纤维蛋白多聚体。因子XIII是由两对不同的多肽链组成的四聚体,在Ca2+参与下由凝血酶、Xa作用于转变为XIIIa, XIIIa使可溶性纤维蛋白多聚体中一分子纤维蛋白单体的Gln残基与另一分子单体的Lys残基间形成分于间共价键,如图18-7所示,从而形成稳定的纤维蛋白多聚体,并在血小板的作用下,使网罗血细胞的血块进一步收缩,形成更坚固的血凝块,完成凝血过程。
三、磷脂在血液凝固中的作用
磷脂不属于凝血因子,但它在血液凝固中的作用非常重要。除血小板外,血管内皮细胞。中性粒细胞及淋巴细胞,因子Ⅲ的脂质部分都可提供磷脂,磷脂的结构和其所带的负电荷在凝血过程中有利于结合许多凝血因子,使其在局部的浓度增加,从而使酶促级联式反应速度加快。如在Xa-Ca2+-V与磷脂形成的复合物中,Xa的浓度比周围介质中增加6万倍,因而有利于血液凝固的快速进行。血小板除提供磷脂外,在血液凝固中还发挥粘附、聚集、释放、收缩等重要的作用,将在病理生理中作进一步讨论。
四、血中的抗凝物质
正常人心血管系统中的血液不会凝固,主要是由于心血管内膜光滑完整,凝血因子一般处于非活化状态,血液的冲刷和稀释可防止血栓形成,肝脏能清除已活化的凝血固子。此外血中还存在着多种抗凝物质,主要有抗凝血酶 Ⅲ(antithrombinⅢ,AT-Ⅲ)、肝素(heparin)、蛋白C与蛋白S及组织因子途径抑制物(tissue factor pathway inhibitor,TFPl)。
AT-Ⅲ是由肝合成的一种分子量为60, 000的α2球蛋白,通过与因子Ⅱ、Ⅸ、X、Ⅺ、XII、PK等形成1:1的共价复合物而灭活这些因子。据认为对凝血酶的灭活70%~80%是由AT-Ⅲ完成的,故它是体内活性最强的一种抗凝物质。
肝素是由肥大细胞合成的一种酸性蛋白聚糖,如图18-8所示,正常情况下血中含量甚微,所以生理条件下其抗凝作用小。尽管如此,它作为抗凝剂应用于临床也已有半个多世纪。肝素分子中硫酸根带负电荷可与AT-Ⅲ分子中的Lys残基的正电荷相结合,使AT-Ⅲ的构象改变,显著加强其对上述凝血因子的抑制作用,肝素还可抑制血小板的粘聚作用,从而影响血小板磷脂的释放,也起到抗凝作用。
在血浆中有一种依赖肝素的单链糖蛋白,称之为肝素辅因子-II,它能提高肝素通过AT-Ⅲ抑制凝血酶的效率。
蛋白c(protein C,PC)是由肝合成的一个依赖维生索K的糖蛋白,分子中含Gla,可螯合Ca2+。凝血酶能激活PC,有活性的PC称为活化蛋白C(activeprotein C,APC).具有明显的抗凝作用,主要是灭活凝血辅因子如因子V、VIII等,阻碍Xa与血小板磷脂结合,促进纤维蛋白溶解。
蛋白S(protein S,PS)是一种依赖维生素K,含G1a的单链糖蛋白,其作用是加速APC对因子V、Ⅷ的灭活,阻断补体系统的激活。
组织因子途径抑制物是由血小板、血管内皮细胞、单核细胞和肝细胞合成,其作用是在Ca2+存在下,抑制Ⅶa-Ca2+—Ⅲ复合物的活性,并还能直接抑制Xa的活性。
此外血液中还存在着纤维蛋白溶解系统,可促进血凝块的溶解,防止血栓形成。
五、纤维蛋白溶解
纤维蛋白溶解系统(fibrinolytic system),简称纤溶系统,其作用是将纤维蛋白溶解酶原转变为纤维蛋白溶解酶 (纤溶酶),及纤溶酶降解纤维蛋白或纤维蛋白原。纤溶系统是维持人体生理功能所必需的,当该系统功能亢进时易发生出血现象,功能下降时则导致血栓形成,因此具有重要的生理病理意义。此外,纤溶系统还包括一些纤溶激活物的拮抗物及灭活纤培酶的成分,这些物质对纤溶系统的激活起重要的调节作用。纤维蛋白的溶解过程可分为纤溶酶的生成和纤维蛋白的溶解两个阶段.如图18-8所示。
(一)纤溶酶的生成
纤溶酶(plasmin)在血浆中以纤溶酶原(plasminogen)形式存在,它主要是由肝合成,此外嗜酸性细胞及肾脏也能合成,是一个含790个氨基酸残基的单链糖蛋白。纤溶酶原在各种激活物的作用下,分子中第561位的Arg与第562位的Val残基之间的肽键断裂,形成有活性的纤溶酶。纤溶酶的主要激活途径有以下三条:
1.内激活途径主要通过内源性凝血途径接触活化所生成的XIIa,使前激肽释放酶转变为激肽释放酶,此酶可使纤溶酶原转变为纤溶酶。
2.外激活途径通过组织纤溶酶原激活物(tissue type plasminogen activator,t PA;又可称血管纤溶酶原激活物
Ⅳ 体检报告中的“生化室”是指什么
生化室就是负责检测你体检报告中数据的检验科的一个部门
生化室主要工作是以生化检验为主,开展肝功能、肾功能、心肌酶、血脂、骨骼肌酶、免疫球蛋白、补体以及其他的生化检验项目和血清、血红蛋白电泳。